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-
Word to Word Semantic Similarity

Distributional semantics

Word Embedding: learn a real-valued vector representation of words so
that any vector distance — usually the cosine similarity — encodes the
word-to-word semantic similarity

Knowledge base semantic similarity
Uses a taxonomy, usually Wordnet to compute semantic similarity between
words. Methods based on graph metrics or information content
» Graph metrics HSO [Hirst and St-Onge, 1998],
LCH [Leacock and Chodorow, 1998], WUP [Wu and Palmer, 1994]

» Information Content LESK [Banerjee and Pedersen, 2002],
JCN [Jiang and Conrath, 1997]

» Hybrid RES [Resnik, 1995], LIN [Lin, 1998]
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Performance

Quality
JCN and LCH present the best correlation with human ranking

Runtime

Both methods are slow, tens/hundreds of milliseconds for cold start,
milliseconds afterward.
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-
Going Faster

Finding Binary Codes

Is it possible to find binary codes so that their hamming distance preserve
the semantic similarity 7
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Going Faster

Finding Binary Codes
Is it possible to find binary codes so that their hamming distance preserve
the semantic similarity 7

Hint
For LCH, the similarity is a monotonic function of the shortest path
distance in the Wordnet hypernym structure. => Metric Embedding
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-
Metric Embedding

Definition

A metric embedding function f from a metric space (A, d;) into (B, d>)
the is defined as follows

V(wi, w;), di(wi, wj) = A da(f(wi), f(w;))

Wi, wj € A
A is a scalar
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-
Wordnet Hypernyms: a lattice

EnmiTY
PHysicAL EnTiTY ABSTRACTION
RELATION
MATTER PART
SUBSTANCE

Sample lattice from Wordnet
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-
Embedding, first try

Lattice into Hypercube

Deza and Laurent (1997) showed that a lattice with shortest path distance
can be isometrically embedded into an hypercube of 2" dimensions.

W
Issues

Dimensions too high: ~ 284990 for Wordnet Synsets. Not a constructive
proof.
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-
Embedding, second try

Lattice is too complicated. What about a tree ? J

RISV 2R G T =TTl S BN TS AVIIVEIEOn metric embedding for boosting semantic s 8 /22



-
Embedding, second try

Lattice is too complicated. What about a tree ? J

We can obtain a tree from the poset by cutting 1% of the edges J
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-
Embedding, second try

Lattice is too complicated. What about a tree ? J
We can obtain a tree from the poset by cutting 1% of the edges J
What the theory says

Isometric embedding: n—1 dimensions. J
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Isometric embedding of a tree

01010 01001

Construction of isometric embedding on a sample tree. For this six nodes tree,
the embedding requires five bits.

SRR TSV 2 A GRS =TTl S BN (TS VIIVEIEOn metric embedding for boosting semantic s 9 /22



Let's relax

Non isometric embedding

The question is to construct an embedding with a good distance
preservation.

l.e. high correlation with original pairwise distances.
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Let's relax

Non isometric embedding

The question is to construct an embedding with a good distance
preservation.

l.e. high correlation with original pairwise distances.

Huge search space

c_ )

~(n=r)!

For 84K nodes (n) into a 64 (r) dimensional hypercube: C > 10100:000
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Let's be specific

Wordnet data
» Branching factor AVG: 4.9 - STD: 14. 96% of nodes < 20.
» Depth AVG: 8.5 - STD: 2. MAX: 18.
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Let’s recall

01010 01001
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Heuristic

We choose to preserve the parent-child distance instead of siblings
distance. J
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Heuristic

We choose to preserve the parent-child distance instead of siblings
distance.

Unique signature

For each node with k children, we allocate [logx(k +1)] bits. Use best
extension first (i.e respecting both distances).
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N
Heuristic

We choose to preserve the parent-child distance instead of siblings
distance.

Unique signature

For each node with k children, we allocate [logx(k +1)] bits. Use best
extension first (i.e respecting both distances).

Word alignment

If the obtained embedding is not word aligned, we can use the remaining
bits to enhance the embedding.
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Example

00000

00001 00010 00100 01000 10000

Isometric

001 010 100 101 011

Value sorting
RMSE=.6, r=.19, p=.16

011 010 110 101
Pre-order Gray Code
RMSE=.66, r=-0.07, p=-0.12

0000

0001 0010 0100 1000 1001

Additional bit and sorting
RMSE=.33, r=.55, p=-.57

Approaches to reduce the tree embedding dimensions.
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Numerical Experiment |
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Embedding dimension

FSE: influence of optimizations and dimensions on the correlation over the tree
distance on Wordnet.
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Numerical Experiment Il

Embedding Bits Pearson’s r Spearman’s p

Chen et al. 17 .235 .186
FSE-Base 84 .699 707
FSE-Best 128 .819 .829
Isometric 84K .919 031

Correlations between LCH, isometric embedding, and FSE for all distances on all
Wordnet-Core noun pairs (p-values < 10~14).
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Numerical Experiment Il

Algo Measure Amount of pairs (n)

103 10* 10° 10° 107
WS4 103> ms 0.156 1.196 11.32 123.89 1,129.3
FSE-Best ms 0.04 0.59 14.15 150.58 1,482
speedup x3900 x2027 x800 x822 X762

Running time or pairwise similarity computations.
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|
Application

Similar Sentence retrieval

Find semantic similar sentences using the hash values. Hash of a sentence
is obtained using Simhash. [Bamba et al., 2012, Subercaze et al., 2013]
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|
Application

Similar Sentence retrieval

Find semantic similar sentences using the hash values. Hash of a sentence
is obtained using Simhash. [Bamba et al., 2012, Subercaze et al., 2013]

v

Example
Token | Weight Hash
a 3 101101
b 2 011001
c 1 100111
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Application

Similar Sentence retrieval

Find semantic similar sentences using the hash values. Hash of a sentence
is obtained using Simhash. [Bamba et al., 2012, Subercaze et al., 2013]

v

Example - Set bit value to +/- weight

Token | Weight Hash
a 3 3-333-33
b 2 -222-2-22
C 1 1-1-1111
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|
Application

Similar Sentence retrieval

Find semantic similar sentences using the hash values. Hash of a sentence
is obtained using Simhash. [Bamba et al., 2012, Subercaze et al., 2013]

v

Example - Sum the values

Token | Weight Hash
a 3 3-333-33
b 2 -222-2-22
C 1 1-1-1111
total 2-242-46
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|
Application

Similar Sentence retrieval

Find semantic similar sentences using the hash values. Hash of a sentence
is obtained using Simhash. [Bamba et al., 2012, Subercaze et al., 2013]

v

Example - Final hash

Token | Weight Hash
a 3 3-333-33
b 2 222-2-22
C 1 1-1-1111
total 2-242-46
hash 101101

RTINS =Wl S I TS VIV On metric embedding for boosting semantic s 18 / 22



Demonstration

Semantic similarity: short sentences.
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http://demo-satin.telecom-st-etienne.fr/lshrecommender/
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